Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Front Pharmacol ; 13: 1050193, 2022.
Article in English | MEDLINE | ID: covidwho-2199115

ABSTRACT

Zapnometinib is a MEK inhibitor currently under clinical development for the treatment of COVID-19 and influenza. Zapnometinib has both antiviral and immunomodulatory effects. Information concerning the absorption, distribution, metabolism, and excretion of the compound following single oral doses of 30 mg/kg [14C]-zapnometinib to rats was required to support pharmacology and toxicology studies in animals and clinical studies in man. As part of the development and safety assessment of this substance, zapnometinib was radioactively labeled and used for the investigation of time-dependent plasma concentrations, the rates and routes of excretion, the extent and time-course of compound distribution in body tissues, the metabolite profiles in plasma, urine and feces and the chemical nature of its metabolites. The present study reveals a rapid but low absorption of zapnometinib from the gastrointestinal tract, with more than 90% of the compound being excreted within 48 h, mainly via feces. Whole body autoradiography confirms that zapnometinib was rapidly and widely distributed, with greatest concentrations in the circulatory and visceral tissues. Maximum plasma and tissue concentrations occurred between two and 8 h post dose. Penetration into the brain was low, and elimination from most tissues almost complete after 168 h. Metabolic profiles showed that the main clearance routes were metabolism via oxidative reactions and glucuronidation. These results further strengthen the knowledge of zapnometinib with respect to the clinical development of the drug.

2.
Front Pharmacol ; 13: 893635, 2022.
Article in English | MEDLINE | ID: covidwho-2113657

ABSTRACT

The mitogen-activated protein kinase (MEK) inhibitor zapnometinib is in development to treat acute viral infections like COVID-19 and influenza. While the antiviral efficacy of zapnometinib is well documented, further data on target engagement/pharmacodynamics (PD) and pharmacokinetics (PK) are needed. Here, we report zapnometinib PK and PD parameters in mice, hamsters, dogs, and healthy human volunteers. Mice received 25 mg/kg/day zapnometinib (12.5 mg/kg p. o. twice daily, 8 h interval). Syrian hamsters received 30 mg/kg (15 mg/kg twice daily) or 60 mg/kg/day once daily. Beagle dogs were administered 300 mg/kg/day, and healthy human volunteers were administered 100, 300, 600 and 900 mg zapnometinib (once daily p. o.). Regardless of species or formulation, zapnometinib maximum plasma concentration (Cmax) was reached between 2-4 h after administration with an elimination half-life of 4-5 h in dogs, 8 h in mice or hamsters and 19 h in human subjects. Doses were sufficient to cause up to 80% MEK inhibition. Across all species approximately 10 µg/ml zapnometinib was appropriate to inhibit 50% of peripheral blood mononuclear cells (PBMC) MEK activity. In mice, a 50%-80% reduction of MEK activity was sufficient to reduce influenza virus titer in the lungs by more than 90%. In general, while >50% MEK inhibition was reached in vivo at most doses, 80% inhibition in PBMCs required significantly higher doses and appeared to be the practical maximal level obtained in vivo. However, the period of reduced phosphorylated extracellular-signal regulated kinase (pERK), a measure of MEK inhibition, was maintained even after elimination of zapnometinib from plasma, suggesting a sustained effect on MEK consistent with regulatory effects or a slow off-rate. These data suggest a target plasma Cmax of at least 10 µg/ml zapnometinib in further clinical studies.

3.
J Transl Med ; 20(1): 391, 2022 09 04.
Article in English | MEDLINE | ID: covidwho-2009424

ABSTRACT

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Subject(s)
COVID-19 , Melanoma , Biomarkers , Humans , Immunotherapy/methods , Italy , Melanoma/genetics , Pandemics , Tumor Microenvironment
4.
J Med Virol ; 94(12): 6097-6102, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007103

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 500 million confirmed cases of COVID-19 have been recorded, with six million deaths. Thus, reducing the COVID-19-related medical burden is an unmet need. Despite a vaccine that is successful in preventing COVID-19-caused death, effective medication to relieve COVID-19-associated symptoms and alleviate disease progression is still in high demand. In particular, one in three COVID-19 patients have signs of long COVID syndrome and are termed, long haulers. At present, there are no effective ways to treat long haulers. In this study, we determine the effectiveness of inhibiting mitogen-activated protein kinase (MEK) signaling in preventing SARS-CoV-2-induced lung damage in mice. We showed that phosphorylation of extracellular signal-regulated kinase, a marker for MEK activation, is high in SARS-CoV-2-infected lung tissues of mice and humans. We also showed that selumetinib, a specific inhibitor of the upstream MEK kinases, reduces cell proliferation, reduces lung damage following SARS-CoV-2 infection, and prolongs the survival of the infected mice. Selumetinib has been approved by the US Food and Drug Administration to treat cancer. Further analysis indicates that amphiregulin, an essential upstream molecule, was upregulated following SARS-CoV-2 infection. Our data suggest that MEK signaling activation represents a target for therapeutic intervention strategies against SARS-CoV-2-induced lung damage and that selumetinib may be repurposed to treat COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Amphiregulin , COVID-19/complications , Extracellular Signal-Regulated MAP Kinases , Humans , Lung , MAP Kinase Kinase Kinases , Mitogen-Activated Protein Kinase Kinases/genetics , RNA, Viral , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
5.
Pharmaceutics ; 14(9)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2006163

ABSTRACT

The coronavirus disease 2019 (COVID-19) represents a global public health burden. In addition to vaccination, safe and efficient antiviral treatment strategies to restrict the viral spread within the patient are urgently needed. An alternative approach to a single-drug therapy is the combinatory use of virus- and host-targeted antivirals, leading to a synergistic boost of the drugs' impact. In this study, we investigated the property of the MEK1/2 inhibitor ATR-002's (zapnometinib) ability to potentiate the effect of direct-acting antivirals (DAA) against SARS-CoV-2 on viral replication. Treatment combinations of ATR-002 with nucleoside inhibitors Molnupiravir and Remdesivir or 3C-like protease inhibitors Nirmatrelvir and Ritonavir, the ingredients of the drug Paxlovid, were examined in Calu-3 cells to evaluate the advantage of their combinatory use against a SARS-CoV-2 infection. Synergistic effects could be observed for all tested combinations of ATR-002 with DAAs, as calculated by four different reference models in a concentration range that was very well-tolerated by the cells. Our results show that ATR-002 has the potential to act synergistically in combination with direct-acting antivirals, allowing for a reduction in the effective concentrations of the individual drugs and reducing side effects.

6.
Applied Sciences ; 12(15):7552, 2022.
Article in English | ProQuest Central | ID: covidwho-1993922

ABSTRACT

Molecular profiling has revolutionized the treatment of metastatic NSCLC. Uncommon mutations have been reported primarily in EGFR and BRAF genes and are frequently associated with atypical clinical presentations. Here, we present a rare case of a patient affected by BRAF exon 15 p.K601E-mutated lung cancer with synchronous peritoneal carcinomatosis. First line treatment with chemo-immunotherapy combinations provided a PFS of 8–9 months, whereas a second line treatment with BRAF and MEK inhibitors elicited a dissociated response. The latter clinical outcome suggests that these inhibitors have only partial activity against this rare mutation.

7.
Mol Cell Proteomics ; 21(7): 100247, 2022 07.
Article in English | MEDLINE | ID: covidwho-1907570

ABSTRACT

Since the discovery of oncogenes, there has been tremendous interest to understand their mechanistic basis and to develop broadly actionable therapeutics. Some of the most frequently activated oncogenes driving diverse cancers are c-MYC, EGFR, HER2, AKT, KRAS, BRAF, and MEK. Using a reductionist approach, we explored how cellular proteomes are remodeled in isogenic cell lines engineered with or without these driver oncogenes. The most striking discovery for all oncogenic models was the systematic downregulation of scores of antiviral proteins regulated by type 1 interferon. These findings extended to cancer cell lines and patient-derived xenograft models of highly refractory pancreatic cancer and osteosarcoma driven by KRAS and MYC oncogenes. The oncogenes reduced basal expression of and autocrine stimulation by type 1 interferon causing remarkable convergence on common phenotypic and functional profiles. In particular, there was dramatically lower expression of dsRNA sensors including DDX58 (RIG-I) and OAS proteins, which resulted in attenuated functional responses when the oncogenic cells were treated with the dsRNA mimetic, polyI:C, and increased susceptibility to infection with an RNA virus shown using SARS-CoV-2. Our reductionist approach provides molecular and functional insights connected to immune evasion hallmarks in cancers and suggests therapeutic opportunities.


Subject(s)
COVID-19 , Interferon-beta , Oncogenes , Proteomics , Animals , Antiviral Restriction Factors , COVID-19/immunology , Carcinogenesis , Cell Line, Tumor , Humans , Interferon-beta/immunology , Proto-Oncogene Proteins p21(ras)/genetics , SARS-CoV-2
8.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1616112

ABSTRACT

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Fenamates/pharmacology , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Animals , COVID-19/metabolism , Cell Line , Cells, Cultured , Chlorocebus aethiops , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
10.
Phytomed Plus ; 1(2): 100027, 2021 May.
Article in English | MEDLINE | ID: covidwho-1032443

ABSTRACT

Background: In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose: LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods: Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results: This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion: This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.

11.
Clin Lymphoma Myeloma Leuk ; 21(1): e66-e75, 2021 01.
Article in English | MEDLINE | ID: covidwho-718689

ABSTRACT

Histiocytic disorders are an exceptionally rare group of diseases with diverse manifestations and a paucity of approved treatments, thereby leading to various challenges in their diagnosis and management. With the discovery of novel molecular targets and the incorporation of targeted agents in the management of various adult histiocytic disorders, their management has become increasingly complex. In an attempt to improve the understanding of the clinical features and management of common adult histiocytic disorders (Langerhans cell histiocytosis, Erdheim-Chester disease, Rosai-Dorfman disease, and hemophagocytic lymphohistiocytosis), we created this document based on existing literature and expert opinion.


Subject(s)
Erdheim-Chester Disease/drug therapy , Histiocytosis, Langerhans-Cell/drug therapy , Histiocytosis, Sinus/drug therapy , Lymphohistiocytosis, Hemophagocytic/drug therapy , Adult , Drug Therapy, Combination , Erdheim-Chester Disease/diagnosis , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Sinus/diagnosis , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL